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ABSTRACT 
 
Some near and far term space missions involve formation 
flying, which requires that the positions of multiple 
spacecraft be accurately known relative to a hub spacecraft. 
Many such missions will be located far outside the radius 
of the GPS constellation. So in such missions it will not be 
possible to derive position knowledge through the 
capabilities afforded by the GPS service. Consequently, in 
such missions, it is necessary to determine relative 
positions by other means. Depending on how well a 
position must be known, thus far it has appeared necessary 
to use means other than RF ranging, due to technical 
limitations. Once spacecraft have been crudely positioned 
using RF ranging, other tools such as star trackers, ccd 
cameras, and laser ranging are to be used for precise and 
accurate ranging. NASA Glenn is investigating an 
innovation in RF ranging that could be very useful for 
extending the capabilities of RF ranging in many 
circumstances. Currently, this innovation is a technical 
secret, but this paper will discuss the possibility of using 
RF triangulation for the purposes stated in its title, without 
disclosing any proprietary information. This paper includes 
a simulation that successfully illustrates how this 
technology could be used to perform vehicle tracking. 

 
INTRODUCTION 

 
While the ranging innovation was inspired by research on 
formation flying, this paper focuses on other space and 
terrestrial applications of that innovation. One such space 
application to be discussed herein has recently emerged 
from the new Presidential Space Exploration Initiative 
calling for colonization of the moon [1]. Such a colony 
would involve a moon base and moon rovers that would 
transport lunar explorers across the surface of the moon. 
With such a vision in mind, it is an important requirement 
that those residing in the base be able to accurately know 
the location of their colleagues in moon rovers that may 
have been driven out of the range of line of sight 
communication. Inasmuch as there are no GPS [2] 
satellites orbiting the moon and it is impractical to make it 
 

so, it is necessary to consider other means by which this 
remote position-determination requirement may be met. 
Furthermore, there are also terrestrial applications that can 
make use of the aforementioned innovation that fall under 
the broad categories of people, object, and vehicle tracking. 
An example of people tracking is that of tracking 
firefighters in a burning building [3]. An example of object 
tracking is localization or position-determination of a 
robot's location [4]. Finally, an example of vehicle tracking 
is non-GPS tracking of automobiles for surveillance or 
auto-theft recovery purposes. 
 
The simulation and analysis of tracking lunar rovers 
relative to a moon base is germane to NASA’s mission; 
however, the same analytical techniques can be used to 
easily generalize the results to other planets or 
environments navigable by land vehicles, the greatest 
interest obviously being in terrestrial tracking. With this 
object in mind, we first consider terrestrial tracking while 
illustrating how to perform lunar tracking. 
 
Terrestrial Vehicle Tracking Application 
There are many reasons one may wish to use terrestrial 
vehicle tracking. The aim of this paper is not to discuss 
every one, but to focus on one of timely interest. A 
particular company has approached us to ascertain 
whether it is possible to know—at a remote location—the 
approximate location of a vehicle without using GPS. We 
address this problem with the same solution we propose 
for lunar vehicle tracking. We propose establishing a 
sparse network of towers of potentially modest height. 
The relative locations of the towers in the network need 
to be known. We will show that this accomplishment is 
quite feasible by discussing the required number of 
towers and their height. To motivate this discussion, we 
begin with the assumption that if we can communicate 
with sufficient power then the only barrier that would 
prevent neighboring towers from communicating is that 
they are on opposite sides of the horizon. Now we obtain 
the maximum range between two towers of given height, 
h, by allowing their line of sight to be tangent to the 
surface of the earth (fig. 1).  
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Using auxiliary figure 2, we can obtain the length of the 
segment, D, joining the transceivers of two such towers: 
 
 (h + r)2 = (D/2)2 + r2 (1) 
 
We use 6, 356.91 km as the radius of the earth, and  
1, 738.09 km as that of the moon. According to Eq. (1), 
for the earth, D = 71, 313.162 m; for the moon, D = 37, 
290 m. To establish the network as a square grid of 
towers in, say, a metropolitan area, consider figure 3. 
 
So we see that a 3 by 3 grid of 9 towers will cover at least 
a square area of 62.7 by 62.7 miles. Every point within 
this square grid is less than a distance D from at least 
three towers. Such a calculation reveals the installation of 
such a tower network to be quite feasible. The purpose of 
each tower is to calculate the range from that tower to the 
vehicle being tracked. We are at liberty to mention the 
capability we have developed, but we are not permitted to 
describe the method of implementation. We have 
developed ranging technology that will, in the grid 
described, enable the three nearest towers to determine 
their ranges to the vehicle being tracked. The range 
acquisition time chosen for this simulation is 0.0186 s. 
That is to say, each range is determined in 0.0186 s. 

 
 
 
Terrestrial Vehicle Tracking Simulation 
In the simulations, the tower height h = 100 m. Such a 
tower height is not unreasonable since the author has 
personally witnessed a legal Citizen’s Band (CB) antenna 
at a residential address in Cleveland, Ohio that is 
approximately 150 feet tall. It would not be incredible to 
envision a tower twice as high (100 m. high) next to, say, 
a telephone pole. A business could probably pay a 
residential homeowner a nominal rental fee for the right 
to erect such a tower in his backyard to serve the 
business-owner’s interests. We establish the altitudes in 
figure 3 as follows. The planar coordinates of two 
random points, a and b, in the square are selected. The 
altitudes of a and b are randomly selected as a uniform 
random number in the range [0, 10 m.]. For example, in 
the simulation to be discussed here, a = {–19111.7,  
–32764.8, 8.25382} and b = {29520.9, 4176.17, 
4.02696}. Consequently, the area covered by the towers 
is on a ramp, which either slopes upward or downward 
with increasing x. A representative picture of this 
situation is shown in figure 4. Figure 4 actually depicts a 
similar scenario later described, but one picture for both 
scenarios effectively and economically conveys the idea, 
even if the dimensions in that picture apply only for the 
latter scenario. The 11 black points embedded in the 
plane are the 11 positions sampled from the trajectory of 
the car. With all three coordinates of a and b selected, any 
point on the line joining a and b can be represented by 
p[s] = a + s (b – a), where s is a free parameter. Given the 
abscissa or ordinate of any tower, it is possible to 
determine its corresponding s value. We assume for these 
simulations that the line joining a and b is not parallel to 
either the x or y axes. Such an assumption is valid since 
we choose a and b in order to make it so. Consequently, 
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all towers having the same abscissa also have the same s 
value. Once a and b are selected, we calculate the s value 
for the central base tower (station) B. The central base 
station has planar coordinates {0, 0}. Every tower to the 

left of B has –d 2
2

 as an abscissa. Likewise, every 

tower to the right of B has d 2
2

 as an abscissa. Every 

tower above B has d 2
2

 as an ordinate, and every one 

below B has –d 2
2

 as an ordinate. For a particular 

simulation, the coordinates of each tower transceiver are 
given in the following table. 
 

Tower 
transceiver 

Coordinates (m.) 

1 {–50426.02027, 50426.02027, 110.9754634} 
2 {0, 50426.02027, 106.5927412} 
3 {50426.02027, 50426.02027, 102.2100189} 
4 {–50426.02027, 0, 110.9754634} 
5 {0, 0, 106.593} 
6 {50426.02027, 0, 102.2100189} 
7 {–50426.02027, –50426.02027, 110.9754634} 
8 {0, –50426.02027, 106.5927412} 
9 {50426.02027, –50426.02027, 102.2100189} 

 
Suffice it to say that the towers are erected parallel to the 
radius of the earth extending to the base of the tower 
(towers are plumb).  
 
In this simulation, the estimated positions at various 
points of the trajectory found via ranging are juxtaposed 
with the actual positions of the tracked car in the 
following table. 
 

Time 
step 

Actual position of 
tracked vehicle 

Tracked  
position 

1 {–19111.73146, 
–32764.84482, 
8.253816322} 

{–19292.6, 
–32579.9, 
225.908} 

2 {–14248.46881, 
–29070.74341, 
7.831131185} 

{–14395.1, 
–29085.9, 
502.434} 

3 {–9385.206156, 
–25376.64199, 
7.408446048} 

{–9515.18, 
–25575.3, 
107.568} 

4 {–4521.943504, 
–21682.54058, 
6.98576091} 

{–5071.47, 
–21831.6, 
76.472} 

5 {341.3191475, 
–17988.43916, 
6.563075773} 

{396.402, 
–18063.9, 
107.205} 

6 {5204.581799, 
–14294.33775, 
6.140390636} 

{5819.44, 
–14530.2, 
291.259} 

7 {10067.84445, 
–10600.23633, 
5.717705499} 

{10426.8, 
–10906.3, 
–24739.2} 

8 {14931.1071, 
–6906.134916, 
5.295020362} 

{15253.8, 
–6937.61, 
–103283.} 

9 {19794.36975, 
–3212.033501, 
4.872335225} 

{19753.9, 
–3220.29, 
104.787} 

10 {24657.63241, 
482.0679141, 
4.449650088} 

{24621.7, 
894.427, 
14947.7} 

11 {29520.89506, 
4176.169329, 
4.026964951} 

{29533., 
4690.04, 
142.863} 

 
Note that the altitudes of the tracked positions are badly 
in error. These poor altitude estimates are primarily due 
to the unavoidable errors in range measurements; 
however, by having wide variations in the transceiver 
altitudes at the tower, they may be mitigated. Both of 
these statements may be verified by looking at the 
following simulation data. First we repeat the simulation 
above under identical conditions, except that we perform 
the range measurements with no error. 
 

Time  
step 

Actual position of  
tracked vehicle 

Tracked  
position 

1 {–19111.73146, 
–32764.84482, 
8.253816322} 

{–19111.7,  
–32764.8,  
8.25382} 

2 {–14248.46881, 
–29070.74341, 
7.831131185} 

{–14248.5,  
–29070.7,  
7.83113} 

3 {–9385.206156, 
–25376.64199, 
7.408446048} 

{–9385.21,  
–25376.6,  
7.40845} 

4 {–4521.943504, 
–21682.54058, 
6.98576091} 

{–4521.94,  
–21682.5,  
6.98576} 

5 {341.3191475, {341.319,  
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Time  
step 

Actual position of  
tracked vehicle 

Tracked  
position 

–17988.43916, 
6.563075773} 

–17988.4,  
6.56308} 

6 {5204.581799, 
–14294.33775, 
6.140390636} 

{5204.58,  
–14294.3,  
6.14039} 

7 {10067.84445, 
–10600.23633, 
5.717705499} 

{10067.8,  
–10600.2,  
5.71771} 

8 {14931.1071, 
–6906.134916, 
5.295020362} 

{14931.1,  
–6906.13,  
5.29502} 

9 {19794.36975, 
–3212.033501, 
4.872335225} 

{19794.4,  
–3212.03,  
4.87234} 

10 {24657.63241, 
482.0679141, 
4.449650088} 

{24657.6,  
482.068,  
4.44965} 

11 {29520.89506, 
4176.169329, 
4.026964951} 

{29520.9,  
4176.17,  
4.02696} 

 
To verify the assertion that by having wide variations in 
the transceiver altitudes at the tower, errors in tracking 
positions may be mitigated, we repeat the simulation 
above with but one change: the altitudes of points a and b 
are uniformly chosen from the interval [0, 10000 m.] 
instead of [0, 10 m.]. We obtain the following table for 
tower transceiver coordinates. 
 

Tower 
transceiver 

Coordinates (m.) 

1 {–50426.02027, 50426.02027, 11075.46337} 
2 {0, 50426.02027, 6692.741153} 
3 {50426.02027, 50426.02027, 2310.018931} 
4 {–50426.02027, 0, 11075.46337} 
5 {0, 0, 6692.74} 
6 {50426.02027, 0, 2310.018931} 
7 {–50426.02027, –50426.02027, 11075.46337} 
8 {0, -50426.02027, 6692.741153} 
9 {50426.02027, –50426.02027, 2310.018931} 
 
The comparison between actual and tracked positions is 
given as follows: 
 

Time 
step 

Actual position of 
tracked vehicle 

Tracked  
position 

1 {–19111.7, 
–32764.8, 
8253.82} 

{–19337, 
–32579.9, 
8373.27} 

2 {–14248.5, 
–29070.7, 
7831.13} 

{–16863, 
–29085.9, 
–19510} 

3 {–9385.21, 
–25376.6, 
7408.45} 

{–9832.01, 
–25353.6, 
7906.18} 

4 {–4521.94, 
–21682.5, 
6985.76} 

{–4430.16, 
–21831.6, 
16262.7} 

5 {341.319, 
–17988.4, 
6563.08} 

{583.033, 
–18063.9, 
6648.69} 

6 {5204.58, 
–14294.3, 
6140.39} 

{–14051, 
–14530.2, 
–215333} 

7 {10067.8, 
–10600.2, 
5717.71} 

{10168.4, 
–11065.1, 
5865.69} 

8 {14931.1, 
–6906.13, 
5295.02} 

{15001, 
–6937.61, 
5403.25} 

9 {19794.4, 
–3212.03, 
4872.34} 

{–978.57, 
–3280.72, 
–234734.} 

10 {24657.6, 
482.068, 
4449.65} 

{46917.9, 
894.427, 
261049} 

11 {29520.9, 
4176.17, 
4026.96} 

{29514.4, 
4690.04, 
4288.32} 

 
Clearly, there is some improvement in altitude tracking 
under this scenario. 
 
Tracking Analysis 
It is clear from the data presented thus far that position 
tracking within the grid is fairly accurate. Unfortunately, 
it appears that the altitude of the tracked vehicle cannot 
be accurately calculated through this ranging process. 
However, for most purposes in terrestrial tracking, the 
altitude is irrelevant. It is sufficient to know that the 
tracked vehicle is simply on the ground, where it is 
expected to be. Two coordinates, longitude and latitude, 
are sufficient for determining any position on a globe. So 
in spite of the fact that altitude is apparently not 
determined here, it appears as though this method is 
useful for determining planar terrestrial positions. It is 
important to mention, though, that we could show that the 
closer (within limits) the vehicle being tracked to the 
three towers, the more accurate the tracking, with very 
little dependence on the speed of the vehicle (high 
tracking accuracies for vehicles with speeds of 350 mph 
or more); space does not permit such a demonstration in 
this paper, but such simulations have been performed and 
this demonstration is in the process of being published. In 
this case, it does matter that the simulated speed of the 
vehicle being tracked is 120 mph; though it is very far 
from the towers, if it were moving very slowly, its 
tracking accuracy would go inversely with its speed, 
including that for altitude tracking, assuming wide 
variations in tower transceiver altitudes. 
 
Space limitations also do not permit a lengthy excursion 
into the details of lunar tracking. However, calculations 
of lunar tracking are similar and yield similar results; 
moreover, the theoretical groundwork for lunar tracking 
has been laid and foreshadowed during the detailed 
discussion of terrestrial tracking. 
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Communications Considerations 
In the case of lunar tracking, we do not expect that a lunar 
base need track many lunar rovers. Probably three rovers, 
at most, will be simultaneously tracked. So the lunar case 
will be treated as a subset of the case of terrestrial 
tracking, in which we expect that the central base tower 
will track, perhaps, many tens or even hundreds of 
vehicles within an area serviced by the 3 by 3 grid of 
towers. We anticipate that fewer than 10 frequencies 
would be required to implement this system since 
frequency reuse may be exploited, given that points more 
than a distance D apart may not communicate. A TDMA 
system could be used to track the many vehicles. With 
each vehicle requiring a time slot to be tracked, 
obviously, the number of position updates would directly 
depend on the number of vehicles being tracked. 
 

CONCLUSIONS 
 
A draft system for tracking vehicles on a moon or a 
planet without using GPS has been introduced, simulated, 
and analyzed. The success of the system depends on 
undisclosed, proprietary technology under development 
here at NASA Glenn. In the simulations, it was assumed 
that the car was traveling at 120 mph—to a significant 
extent, the slower the tracked vehicle, the more accurate 
the tracking. Of course, it is an unlikely scenario to be 
tracking any vehicle moving at speeds around 120 mph, 
but when the system is successfully tested under the most 
extreme conditions, it is clear that it would work for less 
stringent ones as well. It is quite possible that with the 
right positioning of towers at an airport, this technology 
and a similar tracking network—involving very little 
infrastructure—could also enable very accurate non-GPS 
tracking of aircraft. We are in the process of selecting a 
company to build a prototype of this ranging innovation. 
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